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Foreword 

The Department of the Navy has only recently begun to structure its human 
resources in an integrated, Total Force manner. To improve the Navy’s ability to 
develop, support and maintain an integrated Total Force, the Office of Naval Research 
has funded the Personnel Integration of Selection, Classification, Evaluations, and 
Surveys (PISCES) effort. This effort encompasses a variety of goals, including the 
development of selection, classification, assessment, assignment, and cost metrics for 
both individuals and teams; Total Force assessment metrics; team configuration 
metrics; and tools to allow increased human resource flexibility while significantly 
lowering transaction costs. 

As part of the PISCES effort, a virtual environment for team simulations will be 
created. This report provides a review of technology available to enable this effort and is 
meant to assist in focusing its development. The authors would like to thank Dr. Michael 
White and Ms Zannette Uriell for their support and guidance. 

 

 

 

DAVID L. ALDERTON, Ph.D. 
Director
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Introduction 

This report defines the capabilities required to develop Test Simulator (TESTOR), an 
experimental agent based virtual simulation for a distributed team. These capabilities 
are organized around the technologies of agent-based approaches, simulation, and 
optimization relevant to team selection and performance. The report identifies 
supporting capabilities necessary for specifying and capturing team performance 
metrics in an experimental virtual simulation environment. Four applications of the 
model consistent with PISCES objectives are considered for the simulation:  

• Prediction of team performance 

• Team selection 

• Individual diagnostic assessment of teamwork 

• Assessment of teamwork  

The report is organized into six sections. In the first section we characterize current 
knowledge of teamwork and the factors that would need to be incorporated in a 
comprehensive simulation of team behavior. The second section reviews agent-based 
models of teamwork describing work involving both teamwork approaches to design of 
multiagent systems and agent-based representation of human behavior. The third 
section examines the advantages and disadvantages of agent-based modeling in the 
context of the complexity and richness of human teams and explores possible methods 
for overcoming the difficulties. The fourth section discusses issues related to predicting 
team performance from simulation. Section five discusses advantages and 
disadvantages of conventional optimization and agent-based approaches to the team 
selection problem. Section six explores the problems and possibilities of using virtual 
team simulation for diagnostic assessment of an individual Sailor’s teamwork behaviors 
and the extension of automatic assessment to human teams.  

Teams and Teamwork 

Teamwork has typically ( McGrath, 1964; Salas, Dickinson, Converse, & 
Tannenbaum, 1992) been characterized by an Input-Process-Output (I-P-O) model 
consisting of inputs such as team composition or personalities of the team members; a 
process, in which these inputs combine to determine team behavior; and output defined 
in terms of team performance or team effectiveness. Variants of this basic model such as 
Kozlowski and  Ilgen (2006) separate the task and situation which may be expected to 
vary over time from more persistent characteristics such as team composition or 
cohesiveness that are properties of the team itself. Other authors such as Marks, 
Mathieu, and Zaccaro (2001) have given greater emphasis to the temporal component 
characterizing team processes as recurring interleaved episodes involving planning, 
action, and reflection and requiring explicit consideration of dynamics. A related issue 
involves the widely made distinction between taskwork, performing an individual task 
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within a team, and teamwork, skills involved in interacting with and supporting other 
members of a team. Crew resource management (Helmreich & Foushee, 1993) training 
and related approaches explicitly target the training of teamwork skills for members 
already proficient in taskwork. A similar progression of teamwork developing after 
taskwork is noted by Cooke, Salas, Kiekel, and Bell (2004) for teams learning an 
Unmanned Aerial Vehicle (UAV) control task. Growing evidence (Chen, Donahue, & 
Klimoski, 2004; Stevens & Campion, 1994; Ellis, Bell, Ployhart, Hollenbeck, & Ilgen, 
2005); however, suggests that some aspects of teamwork skills can be transferred 
between tasks. Stevens and Campion (1999), for example found that 8 percent of the 
variance in supervisor’s ratings of teamwork and 6 percent in ratings of overall 
performance was accounted for by self-reports of teamwork skills. Such reports make it 
reasonable to consider evaluating teamwork skills in simulation at something other than 
the target task.  

This report will adopt the conventional I-P-O viewpoint but follow Kozlowski and 
Ilgen (2006) in treating task and situational demands as a special type of input. This 
perspective will allow us to treat team effectiveness, the objective of this effort, as a 
function of Sailor selection and assignment to teams, the inputs of interest.  

Task Taxonomies 

Taxonomies of team tasks can be divided into three general types organized by 
domain, task characteristics, or function. Domain based taxonomies such as Devine 
(2002) rely on the observation that particular domains or job categories typically 
involve tasks of a few predominant types. Fire fighters, for example, would be classified 
by Devine as belonging to a response-type workgroup and to perform proceduralized 
reactive tasks in uncertain environments under stressful conditions. Fast food workers, 
by contrast, would be classified as belonging to a service-type workgroup and would be 
expected to perform proceduralized reactive tasks but in a structured environment. This 
broad identification of task with occupational category appears well suited for selection 
and assignment decisions but may work less well for behavioral modeling. A doctor’s 
duties, for example, might involve a substantial amount of paperwork in addition to the 
evident knowledge and skill related activities involved in surgery. 

Task characteristic based taxonomies such as that of Holland (1985) account for such 
inconsistencies by classifying tasks into abstract categories typically derived through 
factor analysis. Holland classified tasks as realistic, investigative, artistic, social, 
enterprising, and conventional. These descriptive categories may be useful to the extent 
that they can be readily related to personality traits as for example in Driskell, Salas, and 
Hogan (1987). They also can be shared within a job category as for example a doctor 
who performs investigative (diagnosis), realistic (surgery), and conventional (record 
keeping) tasks in the course of his duties. These categories can again be interpreted in 
terms of a predominant task type for example characterizing the predominant tasks of 
architects as artistic or of clerks as conventional. 

Steiner (1972) proposed a functional taxonomy recently adopted by Barrick, Stewart, 
Neubert, and Mount (1998) that characterized tasks by team process. Steiner’s system 
classifies tasks as: 
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• Additive—requiring summed performance of the group (moving a table, for example) 

• Compensatory—requiring individual performance to be averaged (Delphi 
projections, for example) 

• Conjunctive—requiring adequate performance from entire team (an aircrew with 
pilot, navigator, and gunner, for example) 

• Disjunctive—depending on the maximum performance within group (solving a 
puzzle, for example) 

While this scheme is well adapted for assessing performance and selection it is 
difficult to see how complex realistic tasks can be consistently fitted within functional 
categories. From an agent-based modeling perspective, these functional types of effects 
would be expected to emerge from the execution of tasks in simulation.  

Taxonomic Alternatives 

Development of a new Taxonomy of Navy Teams (ATONT) is one of the precursor 
activities within Personnel Integration of Selection, Classification, Evaluations, and 
Surveys (PISCES) contributing to the development of TESTOR. At this stage it appears 
likely that ATONT will be domain-based and characterize dominant tasks. For agent-
based modeling the crucial consideration will be the degree of constraint imposed by the 
chosen task(s) which will determine the capabilities required of the agent. For 
constrained proceduralized tasks such as interactions among an aircrew flying a supply 
mission, a fairly simple implementation might suffice. A loosely constrained task such as 
mission planning, by contrast, would require much greater sophistication and hence 
greater time and cost to prepare. 

Team Effectiveness 

Team effectiveness refers to a comprehensive assessment of success in performance. 
A team that accomplishes its mission within the allotted time using the allotted 
resources would be considered effective. Objective effectiveness of this sort might be 
judged in any number of ways including supervisors’ ratings, or measures of 
productivity such as quantity or quality. Hackman (1987) maintained that team 
effectiveness needed to consider outcomes affecting the team itself as well as task 
performance and introduced team viability as a complementary outcome measure. 
Team viability referred to team members’ willingness and ability to continue working 
together after accomplishing their task. So for example, a racing team that won a race 
despite antagonizing members of the pit crew, thus decreasing team viability, would be 
considered less effective than a team that won without such social dislocation. Similar 
outcomes related to the history and experience of a team are team efficacy and team 
potency (Gully, Incalcaterra, Joshi, & Beaubien, 2002) referring to a team’s perceived 
capability to perform a task (efficacy) or capabilities in general (potency).  

3 



 

Recommendation  

Team efficacy, potency, and a variety of other factors found to affect team 
performance form a virtuous cycle through which good performance leads to positive 
affect that is in turn correlated with subsequent good performance. With meta-analysis 
reported correlations (Gully et al., 2002) accounting for between 10 percent (potency) 
and 16 percent (efficacy) of observed variance in objective measures (quantity/quality) 
of  team performance, modeling these dynamics may be a potential use for the team 
simulation.  

Team Processes and Assessment  

While team effectiveness can often be measured objectively either through standards 
or through reference to the performance of other teams there are situations such as a 
fruitless patrol for which it is difficult to define an accurate outcome measure. Software 
engineering researchers attempting to assess the quality of software have resolved a 
similar problem by assessing the quality of the process (how the software was written 
and checked) rather than the product (the software itself). If a relationship can be 
established between characteristics of the process and measurable outcomes then in 
situations lacking a measurable outcome, process measurements can be used as 
surrogates. In the study of teams there have been many attempts (Prince & Salas, 1993; 
Marks et al., 2001) to identify stages and behaviors in team processes, typically with 
reference to team effectiveness. Twenty out of 29 models reviewed by Rousseau, Aube, 
and Savoie (2006), for example, record communication as a necessary behavior, while 7 
of the models reference monitoring and back-up behaviors as important to team 
effectiveness.  

For construction of agent-based team simulations, models of team processes and 
behaviors are important for a number of purposes: 

• Defining the information transformation processes (behaviors) and interactions 
between agents needed to simulate human teams 

• Providing more sensitive measures of team performance where outcomes may be 
difficult to assess 

• Identifying contexts and behaviors needed for an agent to interact with human team 
members 

• Developing process measures for assessing teamwork behaviors of human 
interacting with team simulation 

• Automated assessment of teamwork behaviors of human teams interacting through 
simulation 

Researchers will use the teamwork process model proposed by Rousseau et al. 
(2006) as an integration of 27 earlier models (8 of them listing Eduardo Salas as an 
author) to illustrate processes needing inclusion in a comprehensive team simulation. 
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Figure 1. Schematic representation of the hierarchical conceptual structure 
of teamwork behaviors from Rousseau, V., Aubé, C. and Savoie, A. (2006).  

The approach will be to identify subsets of these behaviors that tend to co-occur in 
real tasks. If a group of operationally significant tasks can be performed using a limited 
subset of teamwork behaviors then an agent-based model incorporating only this subset 
of behaviors would be sufficient for modeling this group of tasks. Figure 1 presents an 
ontology of teamwork behaviors. The first branching distinguishes between behaviors 
whose purpose is preserving the integrity and effectiveness of the team, labeled 
Management of team maintenance. The other branch labeled Regulation of team 
performance contains behaviors needed for task performance. These are further divided 
among behaviors involved in planning, Preparation of team performance; performing 
the task, Task-related collaborative behaviors; monitoring, Work assessment 
behaviors; and adaptation, Team adjustment behaviors. As Figure 1 illustrates, there 
are distinct sets of processes that may be called upon for different types of tasks. Task-
related collaborative behaviors, Work assessment behaviors, and Team adjustment 
behaviors would be needed to simulate command and control many execution-oriented 
military tasks. The behaviors involved such as information exchange, performance 
monitoring, and backing-up behaviors could be specified fairly concretely and 
implemented as agent rules. Incorporating planning, collaborative problem solving, and 
other more abstract processes into an agent model would require a more complex 
architecture and execution process such as the hierarchical task network (HTN) planner 
used in RETSINA (Sycara, Paolucci, Giampapa & van Velsen, 2001). Adding 
Management of team maintenance functions would require an additional level of 
complexity to accommodate conflicting goals among agents and the need for explicit 
coordination and negotiation mechanisms. What is significant about models of team 
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process is that they can be assembled to accomplish tasks in a way that varies levels of 
complexity and that many of the tasks likely to be of most interest to the Navy (e.g.; 
structured well practiced tasks), can be accommodated by the simpler models. 

For team members to be modeled by agents will require concrete individual I-P-O 
specifications as well as description of the processes through which they interact. While 
sensory inputs can be derived from descriptions of the task and environment, defining 
agent processes will require considering what team members know and think. Within 
the teamwork literature these skills can be described by knowledge and skills (Hackman 
1992) characterizing taskwork (what to do) and teamwork (how to interact with other 
agents) and what is referred to as transactive memory, knowledge of how information is 
distributed within the team. 

Criteria for Assessing Quality of Process Performance 
Sensing 

Accurate detection of all available information 
Correct interpretation (attachment of correct meaning) of all detected information, 

to include appropriate weighing of its importance 
Accurate discrimination between relevant and irrelevant information 
Attempts to obtain information are relevant to mission, task, or problem 
Sensing activities are timely in relation to information requirements and the tactical 

situation of the moment 
Internal processing and recording of information provides ready availability to users 

Communicating Information 
Accuracy of transmission of available information 
Sufficiently complete to transmit full and accurate understanding to receivers of 

communications 
Timeliness appropriate to unit requirements 
Correct choice of recipients: everyone who needs information receives it 
Whether message should have been communicated 

Decision Making 
Adequacy: Was the decision adequately correct in view of circumstances and 

information available to the decision maker? 
Appropriateness: Was the decision timely in view of the information available to the 

decision maker? 
Completeness: Did the decision take into account all or most contingencies, 

alternatives, and possibilities? 
Stabilizing 

Adequacy: Action is correct in view of the operational situation and conditions that 
the action is intended to change or overcome 

Appropriateness: Timing is appropriate in view of the situation, conditions, and 
intended effects. Choice of target of the action is appropriate 

Completeness: Action fully meets the requirements of the situation 
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Communicating implementation 
Accuracy of transmission of instructions 
Sufficient completeness to transmit adequate and full understanding of actions 

required 
Timely transmission in view of both available information and the action 

requirements of the participants 
Transmission to appropriate recipients 
“Discussion or interpretation” is efficient, relevant, and achieves its purpose 
Whether message should have been communicated 

Coping actions 
Correctness of actions in view of both the current operational circumstances and the 

decision or order from which the action derives 
Timeliness of the action in view of both operational circumstances and the decision 

or order from which the action derives 
Correctness of choice of target of the action 

Feedback 
Correctness of the decision and action to obtain feedback in view of operational 

circumstances, the preceding actions whose results are being evaluated, and 
current information requirements 

Timeliness of the feedback decision and action 
Correctness of choice of target(s) of the action 
Appropriate use of feedback information in new actions, decisions, and plans 

Note. From Battle Staff Integration, by J. A. Olmstead, 1992 (IDA Paper P-2560), Gov. Rep., Alexandria, 
VA: Institute for Defense Analysis. 

Figure 2. Reprinted from Millitello, Kyne, Klein, Getchell, & Thordsen (1999). 

Although Rousseau et al.’s models categorize behaviors in a generally prescriptive 
way implying that there should be behaviors for coordinating, communicating, backing 
up, etc. they do not provide an instrument for classifying an observed team process as 
effective or ineffective. Figure 2 shows one such attempt consistent with the studies 
contributing to Rousseau’s model to provide criteria for assessing teamwork process 
(Olmstead, 1992 reprinted from Milltello, Kyne, Klein, Getchell, & Thordsen, 1999). As 
with Crew Resource Management (CRM) training and much of the research directed by 
Salas under the TADMUS (Team Decision Making Under Stress) program, some of the 
most easily observable process characteristics are found to characterize high 
performance teams, typically teams working in high stress/high consequence settings 
such air crews, operating rooms, or the battlefield. Examination of this list suggests that 
with appropriate choice of task and operationalization of a subset of criteria it should be 
possible to automate the assessment of human teamwork process performance. In 
particular, because these measures of process can be associated with individual team 
members rather than the performance of the team as a whole it could provide an 
instrument to look inside a team allowing for individual assessments independent of 
overall team performance.  
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Attributes Influencing Performance 

While the I-P-O relation between team members and the environment produce the 
behaviors researchers observed in real teams and hope to model in simulation there are 
a variety of characteristics of individuals and teams that moderate this relation. Because 
moderating attributes are things that could be measured in individuals or teams and 
used in making selection decisions, they are a desirable part of the team simulation.  

Individual Differences 

GMA. General mental ability of team members has been found to correlate with 
team performance in as varied areas as crews of soldiers (Tziner & Eden, 1985), systems 
analysts (Hill 1982), and supervisor’s ratings on technical skills, teamwork, and team 
performance in production lines (Stevens & Campion, 1994). Stevens and Campion 
additionally found correlations of .36, .23, and .29 between mean scores on an aptitude 
test and supervisors’ ratings for a team’s technical skills, teamwork, and performance 
suggesting that average GMA may account for approximately 10 percent of variance in 
team performance. Williams and Sternberg (1988) additionally found correlations with 
a team’s highest individual intelligence score suggesting the potential usefulness of 
notions from Steiner’s (1972) functional task taxonomy in modeling disjunctive tasks. 

Personality. Although there is substantial evidence (Barrick & Mount, 1991) of 
association between the 5-factor personality model and individual performance there is 
less direct evidence for teams. Hough (1992), for example, found that ratings on 
conscientiousness, emotional stability, and agreeableness were correlated with ratings 
of cooperativeness with coworkers and team members, but did not include measures of 
team performance in his analysis. Peeters, Rutte, Tuijl, and Reymen (2006) who found 
agreeableness and emotional stability positively related to satisfaction with the team 
make similar conjectures about the relation between agreeableness and teamwork. In 
studies linking personality to team characteristics Schneider, White, and Paul (1998) 
again found agreeableness to account for 8 percent of the variance in measures of fit to 
an organization. There appears to be better evidence for balance among personality 
types as a determinant of team effectiveness. Barry and Stewart (1997), for example, 
found a curvilinear relation between the number of extraverted team members and team 
effectiveness, with teams with too few or too many extraverts performing less well. 
Stewart and Barrick (2004) found another compositional effect in which a single 
member low on agreeableness or emotional stability was sufficient to degrade team 
effectiveness. Peeters et al. (2006) found a positive correlation between satisfaction and 
dissimilarity in conscientiousness as well as a negative relation for dissimilarity in 
extraversion for members low on the trait. As Kozlowski and Ilgen (2006) point out 
“well-developed theoretical models are needed to help specify complex patterns of 
composition.” Such development would be needed before multi-agent compositional 
effects such as those related to dissimilarity or emotional stability could be modeled 
within an agent-based simulation. 
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Task Knowledge and Skills. While the teamwork literature focuses on teamwork 
and team skills real tasks depend largely on team members’ abilities to perform their 
assigned taskwork. Composing teams in terms of requisite skills is a well-known 
problem readily handled by operations research techniques that will be reviewed later. 
Task skills must be incorporated into any agent-based model because of their dominant 
effects on team performance. A plane could be flown by a dull and neurotic pilot, for 
example, but not by an intelligent and agreeable flight crew that did not include a pilot. 

Team Attributes 

In addition to effects associated with individual characteristics and the composition 
of teams there are several widely reported team level characteristics that have been 
shown to be related to team effectiveness. 

Cohesiveness. Team cohesion refers to the degree to which team members report 
identifying with the team and team goals and has been widely studied. Whether 
considered at the individual or team level, cohesion has been consistently shown to 
improve both team processes and team performance. In meta-analyses by Gully, Divine, 
and Whitney, (1995) and Beal, Cohen, Burke, and McLendon (2003), cohesion was 
found to have an effect size of approximately r = .3-.4 with greater effects noted at the 
team level and greater effects for teamwork behaviors than outcomes. Cohesion was also 
found to be a greater factor accounting for almost 22 percent of the variance (Gully et al. 
1995) for highly interdependent tasks. Reports based on field interviews such as Shils 
and Janowitz (1948) classic study of the German Wehrmacht frequently cast cohesion in 
the even stronger role of serving as a buffer against otherwise intolerable stresses in 
combat.  Griffith (1997) and Griffith and Vaitkus (2000) claim this to be its primary role 
and propose models in which cohesion serves as a moderator or mediator rather than a 
main effect on performance.  As the data from studies included in the earlier meta-
analyses measure performance primarily through self-reports, ratings on exercises, and 
other noncombat settings the importance of cohesion to performance in combat is likely 
underestimated.  The meta-analyses, however, substantiate a robust measured relation 
between cohesion and team and individual performance that make a meaningful 
contribution whether directly or indirectly to prediction.  Another feature that may bear 
incorporation into later models is predictable dynamic behavior.  For manpower 
intensive units in the military, Siebold (2007), for example, reports that cohesion 
follows a predictable U-shaped curve, starting out at a high level, beginning to decline at 
approximately three months, bottoming out at approximately a year, then increasing 
from there to regain approximately half its initial level.  

Climate. Organizational climate has been studied widely for almost 70 years and 
consistently shown to relate to team behavior and outcomes. Schneider and Bowen 
(1985) showed that a shared climate involving service predicted customers’ satisfaction 
with their bank branch while Hofmann and Stetzer (1996) found a team climate for 
safety predicted safety-related behaviors and actual accident rates in a chemical plant. 
In a recent meta-analysis Carr, Schmidt, Ford, and DeShon (2003) estimated 
correlations of r = .09 and r = .05 between affective and instrumental aspects of climate 
and individual performance. 
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Efficacy and Potency. Mentioned earlier in the section on team effectiveness, 
team efficacy, the team’s belief in its abilities to perform a task and team potency, the 
team’s confidence in its general abilities, are additional team-level constructs 
demonstrated to enhance team performance. 

A Model of Teamwork Incorporating Attributes 

This brief survey can be summarized in the schematic model shown in Figure 3. The 
factors identified as influencing teamwork do not actually determine what team 
members do but rather how well they work together. In this model a normative team 
(without individual or group characteristics) interacts through a normative process (a 
work flow specifying conditions and actions) with its task and environment. An agent-
based model of a work flow of this sort can be readily programmed. This interaction is 
moderated by individual differences, team composition, and team attributes. If the 
magnitudes of effect estimated in this section were additive such a model might account 
for up to three-quarters of the variance in performance among teams. Such a result, 
however, is extremely unlikely because constructs such as team efficacy, cohesiveness, 
individual agreeability, and general mental ability are almost surely highly correlated 
and likely to interact over time in complex ways. Constructing an accurate model 
predicting differential team behavior from such theory and data would require 
describing these relations precisely. 

Task & Environment 

Normative Team 

Normative Process 

Individual Differences
 
Team Composition 
 
Team Attributes 

 

 

 

 

 

 

 

 

 

 

Figure 3. Teamwork model: Behavior of normative model is moderated. 

Agent Models for Team Simulation  

The study of autonomous agents and multi-agent systems centers around the 
concept of an agent. An agent is an information processing system that can receive 
inputs from its environment and act in turn upon that environment. A rational agent is 
one that acts so as to optimize some performance measure. Because the capacity of a 
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rational agent is limited by its knowledge, its computing resources, and its perspective 
an agent can exhibit only bounded rationality (Simon, 1957). Numerous works in 
artificial intelligence (AI) research try to formalize a logical axiomatization for rational 
agents (see Wooldridge & Jennings [1995] for a review). This axiomatization is 
accomplished by formalizing a model for agent behavior in terms of beliefs, desires, 
goals, and so on. These works are known as belief-desire- intention (BDI) systems (Rao 
& Georgeff, 1991; Shoham, 1993). An agent that has a BDI-type architecture has also 
been called deliberative. This means that its actions are determined by matching beliefs 
to desires to determine intentions rather than simply matching inputs to predetermined 
actions as done with “if-then” production rules. While early AI research attempted to 
develop systems realized as single precocious agents, subsequent research has led to the 
development of multiagent systems (MAS) in which intelligence is modularized. Making 
such systems work required developing theories about the basic requirements for 
coordinated and cooperative behavior. Two dominant perspectives are joint intention 
(Cohen & Levesque, 1990) and SharedPlans (Grosz & Kraus 1996). Joint intention holds 
that teamwork requires maintaining commitment to common goals and requires 
communication for grounding shared beliefs about the state of the task and changing 
circumstances. According to shared-plans, agents must have a common goal, agree on 
the recipe for accomplishing that goal, and accept assigned roles for working toward 
that goal.  

While theory and research involving agents originated in the distributed AI 
community the current field has been greatly expanded to include the study of markets 
and auctions by economists, the behavior of schools of fish or swarms of robots by 
biologists and control theorists, the interactions of self-interested agents by game 
theorists, and many other application areas. This review will focus on forms of MAS that 
include mechanisms most likely to characterize the behavior of Navy teams. These 
mechanisms include: sharing of goals, sharing of plans, and assignment of roles.  

This section introduces the RETSINA multiagent architecture as an example of a 
MAS with facilities for modeling all of the needed mechanisms. A less general approach 
to teamwork pointing out advantages and disadvantages is described. Distinctions and 
difficulties in modeling naturally occurring teamwork phenomena using variable-based 
or agent-based models are also discussed. Applications of agent-based models to 
modeling human behavior and discussion of the issues likely to arise in modeling Sailor 
teams are then reviewed. 

RETSINA: An Example of a Full Featured MAS 

Extending joint intentions and shared-plans that assume a closed world and small 
homogeneous teams, RETSINA provides a multiagent infrastructure for finding, 
assembling, and coordinating teams of agents to accomplish specified goals. RETSINA 
has been developed under the following assumptions: (a) the agent environment is open 
and unpredictable (i.e., agents may appear and disappear dynamically), (b) agents are 
developed for a variety of tasks by different developers that do not collaborate with one 
another, (c) agents are heterogeneous and could reside in different machines distributed 
across networks, and (d) agents can have partially replicated functionality and can 
incorporate models of tasks at different levels of decomposition and abstraction. For 

11 



 

example, there can be a single agent that provides all kinds of weather information 
(including barometric pressure, wind direction etc.) for all cities in the world. On the 
other hand, there could also be weather agents that provide only temperature. 
Alternatively, there can be an agent that provides radar operator functionality, and 
agents that provide only target tracking functionality (a subtask of the radar operator 
task) for a particular environment. These agents could vary in fidelity to the task 
constraints (e.g., the target tracking agent could operate at a more refined resolution 
level for tracking). 

To be an effective team member, besides doing its own task well, an agent must be 
able to receive tasks and goals from other (appropriate) team members, be able to 
communicate the results of its own problem solving activities to appropriate 
participants, monitor team activity and delegate tasks to other team members. A pre-
requisite for an agent to perform effective task delegation is to know (a) which tasks and 
actions it can perform itself, (b) which of its own goals entail actions that can be 
performed by others, and (c) who can perform a given task. The individual agent 
architecture (shown in Figure 4) that was developed (Sycara et al., 2001) includes 
abilities of agents to send messages to one another (RETSINA agents communicate 
using Knowledge Query and Manipulation Language [KQML]), declarative 
representation of agent goals and planning mechanisms for fulfilling these goals. 
Therefore, an agent is aware of the objectives it can plan for and the tasks it can 
perform. In addition, the planning mechanism allows an agent to reason about actions 
that it cannot perform itself but which should be delegated to other agents. To do so, an 
agent needs ways to find out the capabilities of other team members (i.e., what tasks 
other agents can perform). As shown in Figure 4, each agent has a communications 
module, which is responsible for interactions and the exchange of messages with other 
agents. These messages could contain new objectives from other agents or from the 
environment. The communicator uses the input/output message queue to modify the 
agent’s set of high-level objectives in its knowledge store. The planner module uses the 
objectives and a plan library of pre-specified plan fragments. The planner composes 
these plan fragments to construct alternative possible plans for the agent, stored as task 
structures. The scheduler module uses the task structures determined by the planner 
module to create a schedule of primitive actions for execution that the agent can then 
execute. The execution monitor module monitors action execution in the operating 
environment and suggests repairs if actions fail.  
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Figure 4: Individual RETSINA agent. 

The four modules operate in parallel as multi-threaded code. Thus, the agent can 
receive messages from other agents through the communicator module while the 
planning module simultaneously constructs plans. In this way, an agent can interleave 
deliberative planning with information gathering and execution monitoring, an 
important capability in dynamically changing environments.  

In addition an agent has a knowledge store which consists of a goal stack, where 
incoming or internally generated goals are stored; and a task database, where task 
fragments relevant to the agent’s functionality are stored and reused to construct plans. 
The agent model also contains an additional belief database that stores the current 
beliefs of the agent that can change due to evolving situation changes or due to agent-
internal processing. 

Since every agent can both plan and execute action sequences, the above architecture 
enables deliberation and reaction to the environment to be performed as needed at 
every stage of the task decomposition. In addition, the system does not impose on 
agents a particular granularity of task decomposition. Based on the environment and on 
constraints passed down from other agents, a agent can plan and choose the best course 
of action. This enables it to flexibly and dynamically adapt to changes in the 
environment including changes in the goals and intentions of its teammates. 
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Specialized Models of Teamwork 

To implement a software system, we must select coordination and communication 
mechanisms that the agents can use. For some domains, simple pre-arranged 
coordination schemes like the locker-room agreement (Stone & Veloso, 1999) in which 
the teams execute pre-selected plans after observing an environmental trigger are 
adequate. Although this coordination model has been successful in the Robocup 
domain, the locker-room agreement breaks down when there is ambiguity about what 
has been observed; what happens when one agent believes that an event trigger has 
occurred but another agent missed seeing it? The TEAMCORE framework (Tambe 1997) 
recently reimplemented in the Machinetta system (Scerri, Pynadath, Schurr, Farinelli, 
Gandhe & Tambe, 2004) was designed to address this problem by executing “canned 
plans” more flexibly. TEAMCORE agents reason explicitly about goal commitment, 
information sharing, and selective communication to coordinate their actions. The 
behavior of these agents is based on team oriented plans (TOPs), which describe joint 
activities to be performed in terms of the individual roles to be performed and any 
constraints between those roles. TOPs are instantiated dynamically from TOP templates 
at runtime when preconditions associated with the templates are filled. A team of 
Unmanned Combat Air Vehicles (UCAVs), for example, might execute a variety of attack 
TOPs.  

 

Figure 5. A TOP for attack and BDA. 

When a UCAV identifies a target in an open area it might instantiate a simple attack 
TOP and send out a request to fill second attacker and Battle Damage Assessment 
(BDA) roles. After the roles are filled two UCAVs attack the target and the third follows 
to record the damage (Figure 5). Another UCAV spotting a convoy of trucks near cover 
might instantiate a more complex simultaneous attack plan requiring filling multiple 
attacker roles in order that they might attack together to catch the convoy in the open. 
Constraints between these roles will specify interactions such as required execution 
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ordering and whether one role can be performed if another is not currently being 
performed. Because behavior of agents in this scheme is much more constrained than in 
the more general RETSINA architecture, programming and simulating team behavior 
would be easier. Coordinated attack scenarios for a human team could be constructed in 
the same way as the UCAV example above. In terms of Rousseau et al.’s (2006) 
teamwork process model this approach could characterize team behavior for codified 
procedural tasks involving only work assessment or task-related collaborative behaviors. 
To extend modeling to less constrained tasks would require choosing a less constrained 
architecture. 

Agent-based Modeling (ABM) vs. Variable-based Modeling (VBM) 

MAS as discussed to this point have been systems designed by computer scientists to 
solve problems and perform tasks. The insights they have revealed involve things such 
as the necessity of communication, modeling of beliefs, etc. for coordination among 
agents to occur. While many of the constructs in MAS were clearly inspired by human 
behavior (e.g.; the BDI formulation is often referred to as folk psychology), there is no 
guarantee that the resulting MAS will model human behavior. Social scientists and 
economists have approached the problem from the other direction constructing MASs 
with the particular goal of simulating key theoretical elements of some social or 
psychological process (Smith & Conrey, 2007; Parunak, Savit, & Riolo, 1998). 
Exemplars of this approach include Schelling (1971) who demonstrated that agents 
following a simple decision rule of moving to avoid being in a minority of < 30 percent 
resulted in nearly complete segregation of neighborhoods in a 2-dimensional grid. 
Kalick and Hamilton (1986) conducted a similarly counterintuitive demonstration 
showing that the finding that people tend to pair with partners of approximately the 
same attractiveness (r = .6) was more consistent with a population in which each agent 
seeks to maximize its partner’s attractiveness than one in which agents actually 
preferred partners of comparable attractiveness. 

The Kalick and Hamilton study illustrates the basic paradigm of agent-based 
modeling in that data are modeled at both the micro and macro level. The micro level of 
the model is captured by the mate-choice rules of the agents. This rule was hypothesized 
on the basis of studies such as Walster, Aronson, Abrahams, and Rottmann, (1966) 
which found that students preferred more attractive dates rather than those of more 
nearly the same attractiveness. At the macro level the model produces a correlation 
between attractiveness of mates that is closer to that actually observed than the 
alternative, the correlation produced in a population seeking mates of their own level of 
attractiveness.  

A primary distinction between ABM and conventional VBM is the way in which 
macro level behavior is predicted. For VBM, especially parametric models, there are 
principled ways of attributing performance to particular constituents of the model and 
assigning significance levels to them. In a regression model, for example, the variables 
with the greatest contribution to prediction are typically entered first with additional 
variables judged and entered based on their contributions to explained variance. This 
transparency allows the modeler to choose a model that fits but does not over fit the 
data. ABM offers no such protections. The Schelling (1971) and Kalick and Hamilton 
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(1986) models both pass a face validity test for parsimony and hence are compelling. 
Had the dating example included measures of personality, socio-economic status, and 
education level it would almost certainly more closely approximate the gamut of factors 
that enter into real dating decisions but the strength of evidence for the role of 
attractiveness would likely be lost. Because of this need for parsimony and difficulty in 
validation, ABM has been used primarily as a confirmatory method to demonstrate the 
feasibility of producing an observed result from a hypothesized mechanism. 

Data Derived Cognitive Models of Human Behavior 

While both earlier examples involve agent-based models of humans, the agents and 
their behaviors themselves are quite abstract and make no attempt to characterize 
humans or their environment in any detailed way. The agents in the segregation study 
for example are one of two colors (red/green) and allowed to move about a grid from 
one node to another. The dating agents were assigned numbers 1–10 and 
proposed/accepted offers with the associated probability (.10–1.0). While this degree of 
abstraction was useful for demonstrating the feasibility of an observed outcome 
resulting from a behavioral mechanism it lacks the precise specification of behaviors 
that would be desirable for models that are intended to be predictive, perhaps even in 
the absence of outcome data for validation. The data-derived approach bases its claim 
on the construct validity of its data based micro model. If outcomes can be shown to 
match (macro validity), the agreement is interpreted as supporting the micro model 
itself rather than just its feasibility. This approach is basically deductive rather than 
inductive. The micro model is presumed to simulate behavioral processes in the same 
way that a Newtonian model of a pulley system might predict the movements and 
locations of the weights. Because such models of human behavior are inherently 
complex, parsimony cannot be claimed to justify validity and matching outputs typically 
involves substantial tuning. The following subsection presents well-known data-driven 
models that aim to match human cognitive processes. All but one of these models; 
however, are for individual tasks and performance and say nothing about teamwork. 

ACT-R 

Data-derived models have most often been used to characterize behavior at simple 
tasks devoting elaborate detail to cognitive processes involving perception and memory. 
John Anderson’s ACT-R cognitive model (Anderson & Lebiere, 1998) is the most 
thoroughly developed model within this group. ACT-R has two types of modules: 
perceptual-motor modules that provide an interface between ACT-R and its simulated 
environment and memory modules that contain beliefs (declarative memory) or 
production rules (procedural memory). Data resides in buffers simulating brain areas 
that are searched for matches with production rules to fire. There are typically repeated 
modifications of buffer contents with occasional firings leading to actions or collections 
of input from the perceptual-motor modules. ACT-R was developed for and excels at 
predicting performance at controlled tasks of the sort found in psychological 
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laboratories. It accurately simulates performance at memory and learning tasks and 
more recently predicts areas of cortical activation. ACT-R is clearly the best cognitive 
simulation for behavior that occurs within short (.05–1 sec) time spans and for 
modeling effects that depend on details of memorial or perceptual processing.  

Soar 

While ACT-R attempts to model cognition from a structural perspective, Soar 
(Rosenbloom, Laird, & Newell, 1993), takes a functional view. Based on Allen Newell’s 
(1990) unified theory of cognition, Soar incorporates learning through chunking in such 
a way that every decision is based on the current interpretation of sensory data, the 
contents of working memory created by prior problem solving, and any relevant 
knowledge retrieved from long-term memory. Soar is less faithful to psychological 
peculiarities of human cognition and more focused on abstract learning mechanisms 
based on problem spaces that allow “intelligent” behavior to emerge from experience. 
This detachment from the “hardware” allows Soar to model human behavior at a greater 
level of granularity. So Soar could be expected to do things such as model learning 
through analogy or generalizing a solution to a new problem. In some applications Soar 
seems to serve more as an expert systems shell than a cognitive model. 

COGNET iGEN 

COGNET/iGEN (Cognet, 2008), the primary product of Wayne Zachary’s CHI 
Systems, is an expert system shell designed to incorporate some aspects of cognitive 
models. As such, it is much easier to insert into relatively complex scenarios than either 
ACT-R or Soar. COGNET basically does what it is told, so it is possible to program 
complex and sophisticated behaviors without having to learn them (Soar) or decompose 
them into “bit-level” processes (ACT-R). By limiting itself to modeling expert 
performance, considered to be “rich and highly compiled knowledge structures that 
have chunked many lower level productions..” (Zachery, Santarelli, Ryder, Stokes, and 
Scolaro, 2001), it can be programmed and run as a production system using a 
blackboard as a stand-in for working memory. Human frailty is added through 
incorporating factors limiting performance such as visual acuity or sensory noise to 
produce what Zachery refers to as a “performance model” representing both expertise 
and limitations in human expert performance. 

Micro Saint/IPME 

Micro Saint/IPME (Microsaint, 2008) is a product of Micro Analysis and Design, 
now a division of Alion Science and Technology. Micro Saint harks back to the early 
crew modeling simulation SAINT (Siegel & Wolf, 1967). Their approach to operator 
modeling was essentially a queuing simulation. By simulating the arrival and disposal of 
tasks by members of an aircrew the modelers hoped to identify aspects of task design or 
physical layout that might lead to the build up of more queued tasks than a crewmember 
could perform within an allotted time. In its modern form Micro Saint provides a 
general discrete event simulator with a task network model for human actions. The task 
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networks are similar to COGNET’s “expertise model” but more rigid, because they lack a 
blackboard and follow programmed workflows. Individual differences such as level of 
training can be programmed directly into the crewmember models. Finally, 
Performance Shaping Functions (PSFs, the functional expression of performance 
shaping factors such as stress or fatigue) can be defined at the task level to alter the 
probability of success/failure in response to changes in the environment.  

Figure 6 shows an example of an unusual performance shaping function from Swain 
and Guttman (1983) used in probabilistic risk assessment where the approach was first 
developed. This PSF raises the probability of human error to 1.0 immediately following a 
nuclear accident declining to 0.1 only after a half hour. Two hours after the accident has 
occurred PSF probabilities decline to the point that the probability of error is once more 
being determined by the task being performed rather than the PSF. A variety of 
mathematical approaches (Hollnagel, 2000) have been used to moderate predicted 
behavior using PSFs, but all share the logic of perturbing a normative response to reflect 
changes in context. 

Figure 6. PSF for a large scale Loss of Cooling Accident (LOCA) from 
NUREG/1278 Handbook of Human Reliability Analysis. 

Performance Comparison of Cognitive Models 

Table 1 shows a variety of other cognitive modeling systems of varying degrees of 
fidelity and granularity. From 1999–2004, the Air Force Research Laboratory Human 
Effectiveness Directorate (AFRL/HE) sponsored an Agent-Based Modeling and 
Behavior Representation AMBR program (Deutsch et al., 2004) to compare and 
evaluate available models. The major contenders discussed earlier (ACT-R, 
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COGNET/iGen, EPIC-Soar along with DCOG [an AFRL-developed model]) w
evaluated. The tasks that were compared with the performance of human particip
were: 

• Mu

ere 
ants 

ch simplified Air Traffic Control (ATC) task using either a textual or a GUI 

 approximated human performance 
tha

Table 1 
Human behavior representa itectures available for use 

ARCHITE

interface 

• Concept learning task involving spatial relations and embedded in the ATC display 

• Transfer of training test for learned concept  

Across the tests COGNET/iGEN more closely
n other models. Figure 7 reprinted from Tenney and Spector (2001) shows 

comparisons for penalties and times as a function of workload. 

tion arch

CTURE Reference URL 
ACT-R http://act-r.psy.cmu.edu/ 

ART  http://web.mst.edu/~tauritzd/art/ 

s me.htmBrahm http://www.agentisolutions.com/ho  

 rojects/CHRESTCHREST http://www.psyc.nott.ac.uk/research/credit/p  

Clarion http://www.cogsci.rpi.edu/~rsun/clarion.html 

Cogent http://cogent.psyc.bbk.ac.uk 

/iGEN COGNET http://www.chisystems.com  
D-OMAR http://omar.bbn.com/ 

 du/Resources/PDP++//PDP++.htmlEmergent http://www.cnbc.cmu.e  

EPAM http://www.pahomeschoolers.com/epam/ 

 EPIC  http://www.umich.edu/-bcalab/epic.html (no download) 
s  MicroP i http://www.micropsi.org/project.php  

Micro Saint, IPME ucts/prodma.htmhttp://www.maad.com/MaadWeb/prod  

.htmlMIDAS http://human-factors.arc.nasa.gov/dev/www-midas/index  

SimAgent ham.ac.uk/research/projects/poplog/packages
(no download) 
http://www.cs.b
/simagent.html 

Soar technology.comhttp://www.soar  

Adapted from Deutsch, P yo, and Date (2004), Table 1 ew, Tenney, Diller, Godfrey, Spector, Ben
organizes many of the currently available Human Behavior Representation Architectures. URLs  
valid as of 12/21/2007. 
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Figure 7. Display and workload level for penalties and average response 
times reprinted from Tenney & Spector (2001) (AFRL is DCOG, CHI is 

COGNET/iGEN, CMU is ACT-R, and Soar is EPIC-Soar). 

This result should not be surprising given that COGNET/iGEN was developed 
expressly to model expert performance at procedural reactive tasks at this time scale. 
ACT-R which devotes greatest effort to atomic cognitive processes, faces difficulties in 
modeling something as complex as the ATC task at such great detail. By explicitly 
programming limitations for the test task to produce a performance model from its 
expertise model COGNET maximizes its opportunity to match human performance at 
any particular task but this process would need to be repeated for each new task. 
Although it was not tested in this program, Micro Saint/IPME, which also models at the 
task level might be expected to produce similar performance but be even less 
generalizable. 
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Simulated Humans 

While data-derived cognitive models attempt to model the mechanisms generating 
human behavior, simulated humans are models designed to convey the appearance of 
human behavior. Since the advent of sophisticated computer games and military 
simulations, especially those using semi-autonomous forces (ModSAF, JSAF, OTB, 
OneSAF, etc.), in the 1990s there has been a need to supply believable opponents and 
other actors. This is often very difficult because of the complexity of the environments. 
In computer games, for example, simulated entities are often limited to moving along 
arcs between nodes of a graph with their movements restricted to a set of 
preprogrammed animations.  

Efforts to make behaviors more believable may consist of things such as adding 
randomness to paths or varying an actor’s speed. At the other end of the spectrum some 
games have become quite sophisticated with bots (agents within the game) that 
cooperate in attacks. Much of the research in this area is presented at a yearly 
conference originally called Computer Generated Forces and Behavior Representation 
(CGF-BM) and renamed Behavior Representation in Modeling and Simulation (BRIMS) 
in 2003. 

Work in this area is varied but its flavor is probably best characterized by looking at 
several studies. Again, except for TEAMCORE, these are models of individuals and say 
nothing about social teamwork. As might be expected, several of the cognitive models 
introduced earlier have been used in this area as well. Best, Lebiere, and Scarpinatto 
(2002), for example, use ACT-R to model synthetic MOUT (military operations on 
urban terrain) opponents. A major difficulty and a substantial portion of their paper is 
devoted to the problem of extracting information from the game environment in a form 
usable by their model. Because game programmers rely on artifices such as labeling a 
node as an “ambush point” to avoid having to perceive the environment, data from 
function calls available to the applications programming interface (API) had to be used 
for algorithms, in this case based on Hough transforms and binary space partitioning 
(BSP) trees, to extract information in usable form for ACT-R. In the end agents were 
supplied with productions such as “If there is an enemy in sight and there is no escape 
route then shoot at the enemy” to produce MOUT opponent behavior.  

Tambe’s (1997) TEAMCORE teamwork approach introduced earlier was originally 
presented by Hill, Chen, Gratch, Rosenbloom, and Tambe (1997) as an application in 
Soar to provide CGF’s (helicopters) for ModSAF. A more typical cgf team application for 
ModSAF is described by Reece (2003) who modeled team behavior as a hierarchy of 
tasks distributed over unit leaders and unit members. An A* search1 algorithm over a 2-
dimensional regular grid and a topological map was then used to produce a plan in the 
form of a series of waypoints annotated with posture and speed changes for the 
individual vehicles to follow. As these examples suggest, as complexity increases both in 
interacting with the simulation and in finding solutions demands of the task, heuristics, 
and plausibility tend to replace cognitive fidelity as the objective in modeling. 

                                                 
1 A* is a best-first, graph search algorithm that finds the least-cost path from an initial node to a goal 
node. 
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More recently there has been a shift in emphasis toward social and cultural 
plausibility of simulated humans. A body of work from the University of Southern 
California is typified by the ELECT BiLat simulation (Hill, Belanich, et al., 2006). This 
training simulation generates culturally appropriate synthetic characters that interact 
with trainees using both verbal and non-verbal behaviors to train students in culturally 
appropriate/effective modes of interaction. While there is no pretense that the synthetic 
character models in an accurate way the human it portrays, generating an effective 
illusion including maintaining a history, managing dialog, generating posture and 
expressions and tracking appropriate affect is a large and significant software 
engineering project. 

Barry Silverman at the University of Pennsylvania is pursuing a similar effort to 
endow less complex agents within simulations with cultural and other individual 
behavioral differences (Silverman, Johns, Cornwell, & O’Brien 2006a,b). His approach 
uses performance moderator functions similar to the performance shaping functions 
found in Micro Saint and risk assessment. In Silverman’s implementation these 
functions are managed by a separate PMFserv application that is polled by the 
simulation, in the case of Silverman et al. (2006b), Soar-bots running inside the Unreal 
2 game engine. Figure 8 shows a performance moderating function based on the coping 
styles identified by Janis and Mann (1977), an elaboration of the Yerkes-Dodson law 
linking performance to arousal. Note the conceptual similarities to the PSF for a nuclear 
accident. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Performance moderating function for Janis-Man/Yerkes-Dodson 
reprinted from Silverman et al. (2006a). 
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Prediction of Team Performance 

As the preceding section has shown, accurate simulation of human behavior is still in 
its infancy. In these examples there were generally “sweet spots” defined by granularity 
and types of behavior within which a given implementation did well. Outside of this 
range it deteriorated. ACT-R, for instance, was impressive with its predictions for low 
level cognitive behavior, but confronted with the complexity and time scales of MOUT 
tasks fell back on production rules more or less identical to those used by systems such 
as Micro Saint without cognitive pretenses. A key consideration in choosing agent 
models for Navy teams, therefore, should be the desired granularity and the behaviors 
and influences that need to be modeled accurately. A guide to efficiency would be to 
model at as coarse a level as possible while still capturing the behaviors of interest. In 
the case of teamwork, the behaviors and their characteristics were presented earlier. An 
examination of the behavior taxonomy shown in Figure 1 indicates that time could be 
represented loosely through the ordering of events without affecting any of the 
predictions. Similarly, short and long term memory do not appear to be factors. In 
contrast, substantial domain knowledge and the ability to classify and attribute 
communications and actions of others appear to be prerequisites. These requirements 
would argue for weak AI (i.e.; agents whose behavior is largely programmed and 
constrained rather than following general cognitive principles). 

In Figure 3 (reproduced below) a conceptual model of the effects that selection might 
have on team behavior is suggested. In this model, individual differences, team 
composition, and team attributes acted to moderate the behavior of a normative team 
model. Team member roles, goals, and interactions must be fairly precisely defined for 
such a model to exist. Fortunately this is often the case for military tasks of interest.  
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Figure 3. Teamwork model reproduced. 
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Figure 9. Rousseau’s taxonomy with excluded processes in shaded areas. 

Recommendations 

As discussed earlier, this conceptual model is a variant of the performance shaping 
function approach. It requires the ability to specify at the agent (individual differences) 
or team (team attributes) levels the effects of the moderators. Team composition is a 
special case because it arises from individual differences but is expressed in available 
data at the team level. How this should be dealt with would need to be considered in 
implementation. A number of the agent models discussed would be suitable for such a 
normative model if it were restricted to well-constrained procedural tasks. Figure 9 
shows Rousseau’s taxonomy with excluded processes in the shaded areas. 

RETSINA, Machinetta, COGNET/iGEN, Soar, or Micro Saint/IPME would all be 
suitable for this sort of modeling. Following the announced preference for simpler 
simulations would reduce the list to the two task network modelers: RETSINA and 
Micro Saint/IPME and Machinetta with its even more restrictive TOPs and built-in 
(though needing modification to match human) teamwork behaviors. 

If modeling were extended to include planning (the preparation of work 
accomplishment blocks) and team adjustment behaviors requiring problem solving and 
learning the list would be reduced to RETSINA and Soar. In this case, considerable 
validation would be needed to adjust either RETSINA’s HTN planning mechanism or 
Soar’s generalization mechanisms to reflect human planning behavior. 
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Challenges to the Validity of Team Models 

To the extent that modeling is restricted to constrained, well-practiced tasks with 
well defined role responsibilities and errors are limited to random omissions or 
commissions the normative models should be adjustable to account for observed human 
performance. The normative models, however, are only intended to serve as a sort of 
“cloud chamber” to allow observation of the effects of the performance shaping 
functions on team behavior. For this to work PSFs must be tightly parameterized both in 
their isolated effects and in their interactions. A glance at the studies reviewed earlier 
will reveal that the researchers are far from this goal. While the direction of the effect of 
a measurable variable such as team cohesion is well supported, precisely how much it 
should enhance or degrade the output of an executing simulation is not known. Even 
well established psychological laws prove difficult to quantify. The ad hoc 
characterization of PSFs for a nuclear accident or Janis-Mann coping styles are typical 
of such attempts.  

In the absence of clear quantitative data to define PSFs and determine their 
parameters an alternative may be to use team simulations as an experimental testbed 
for examining the sensitivity of team performance at the extremes. The team simulation 
could be treated as a hypothesis generator for subsequent confirmation/disconfirmation 
by real data. Proceeding in such a way it might over time be possible to develop 
confidence in the normative and PSF models. Since this would require affirming the 
micro model on the basis of macro observations selecting a parsimonious (i.e., task 
network) normative model and restricting PSFs to a small number with pronounced 
effects would be necessary. Since a graphical representation of events and user 
interaction would be unnecessary for agent-only simulations, relatively lightweight, fast 
running simulations could be constructed providing a simple or modular agent 
architecture is chosen. This would allow generation of large test sets that systematically 
cross psf’s to help adjust the models to observed interactions between psf’s. 

Team Selection 

Generally, teamwork consists of two key issues: the first is team selection which is to 
select the correct team members from a candidate pool, and the second is task 
assignment which is to assign the team members to the given duties. These two issues 
are tightly connected and shall be addressed in alignment with the objective to optimize 
the team performance. This section discusses the conventional optimization approaches 
on team selection and assignment. Optimization methodologies refer to the mechanisms 
solving problems in which one seeks to minimize or maximize an objective function by 
optimally choosing the values of the decision variables within an allowed set. Since a  
goal of a team assignment is to optimize the performance of the formed team, 
optimization methodologies have been widely applied by researchers and practitioners. 
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Conventional Optimization Approaches 

Team assignment can be either static or dynamic. Static team assignment is that 
once the team is formed, neither the team members nor their duties will change, in 
contrast, dynamic team composition varies in time (i.e., new team members may join 
and some of the existing team member may leave); their duties may also change along 
with the time. The representative work on static team assignment is the “Assignment 
Problem” (AP) studied in Operations Research, in which a mathematical program 
determines the optimal assignment of the agents to a given set of tasks to either 
maximize the total payoff or minimize the total cost. This problem is initiated by Kuhn’s 
seminal work in 1955 (Kuhn 1955). The mathematical model for the classic assignment 
problem can be given as: 
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where xij = 1 if agent i is assigned to task j, 0 if not, and cij = the cost of assigning agent i 
to task j. The first set of constraints ensures that every task is assigned to only one agent 
and the second set of constraints ensures that every agent is assigned to a task. The 
basic mathematical structure of the problem makes the constraint that xij be binary 
unnecessary since there will automatically be an optimal linear programming solution in 
which every xij is either 0 or 1. This classic assignment problem is mathematically 
identical to the weighted bipartite matching problem from graph theory and thus 
results from that problem formulation have been used in constructing efficient solution 
procedures for the classic assignment problem. 

After Kuhn’s seminal work, there is a stream of research that extends the classical 
assignment problem by considering: agent qualification (Caron, Hansen, & Jaumard, 
1999) where an agent may only be qualified for a subset of tasks, partial agent and task 
matching (Dell’Amico & Martello, 1997) where only a subset of given tasks need to be 
assigned and only a subset of the agents can be deployed, bottleneck assignment 
problem (Ford and Fulkerson, 1966) in which the problem is to minimize the maximum 
cost of assigning the tasks, the semi-assignment problem (Kennington & Wang, 1992) 
where some tasks that need to be assigned are identical; etc.  
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This stream of work on extensions of the classical assignment problem has assumed 
that each agent may only take one task. This might not be true in practice. Therefore, 
researchers have also studied generalized assignment problems (GAP). These models 
assume that each task will be assigned to one agent, but it allows for the possibility that 
an agent may be assigned more than one task, while recognizing how much of an agent’s 
capacity each task would use. Thus, the GAP is an example of a one-to-many assignment 
problem that recognizes capacity limits. Recognizing that a task may use only part of an 
agent’s capacity (GAP) rather than all of it (AP), leads to the following model: 
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where xij = 1 if agent i is assigned to task j, 0 if not, cij = the cost of assigning agent i to 
task j, aij is the amount of agent i’s capacity used if that agent is assigned to task j, and bi 
is the available capacity of agent i. The first set of constraints ensures that every task is 
assigned to only one agent and the second set of constraints ensures that the set of tasks 
assigned to an agent do not exceed its capacity.  

With the more realistic characteristics, GAP has wider applications. In particular, 
Garrett, Dasgupta, Silva, Vannucci, and Simien (2005) model the Navy Sailor 
assignment problem by the GAP model and design evolutionary algorithm solving 
techniques that provide efficient solutions. Similarly, Holder (2005) models Navy 
personnel job assignment while additionally considering Sailor satisfaction, and designs 
traditional optimization solving techniques. 

The models discussed so far are all static models where there are no stochastic 
factors and the models do not consider future amendments either from the tasks’ side or 
agents’ side. For instance, in Garrett et al. (2005), the authors assume that the jobs that 
Sailors are assigned to are deterministic and there would not be new tasks appearing or 
modifications on the old tasks; similarly, Sailors also will not change things, such as 
their capabilities or characteristics. Therefore, a more realistic extension of the above 
models is to consider the uncertainties and future variations. Similar problems widely 
exist in practice, such as call center scheduling problems where tasks are arriving 
stochastically and agents may join and leave the workforce. Traditional optimization 
mechanisms to address this type of problems are dynamic programming (DP) and 
scheduling. Generally, a DP assignment model assumes that there are multiple periods 
in which decisions need to be made on task and agent assignment; the agents once 
assigned to some tasks may be occupied for some time length (e.g., they will become free 
again after they finish their current tasks); the future modifications follow some 
stochastic pattern (e.g., stochastic process); and the goal is to optimize the aggregated 
performance in the whole time horizon. There is extensive literature on these problems. 
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Mehrotra and Fama (2003) provide an extensive tutorial on call center staffing, 
scheduling and traditional simulation techniques. Similarly, Ernst, Jiang, 
Krishnamoorthy, and Sier (2004) provide a review on staff scheduling and rostering.  

Advantages and Disadvantages  

Optimization methodologies are rigorous with systematical proofs and precise 
presentations. Optimization methodologies rely on rigorous optimization theories that 
capture each of the considered factors by mathematical representation. With an 
optimization model, one can find the accurate solution with proofs to the problem and 
present the solution in a concrete way. Furthermore, the results of the model usually can 
be easily understood and followed with the mathematical presentations. 

This strength of optimization methodologies also comes with limitations. To apply 
those models, one must be able to model the problem characteristics using 
mathematical representations. However, there are many factors in practice that are 
difficult to model in mathematics, such as Sailors’ personalities, their satisfactions with 
the tasks, the team cohesion, and the uncertainties in Navy task execution. Therefore, 
this means that to follow the conventional optimization theories, one has to compromise 
many factors that are important in a teamwork assignment. The second limitation of the 
conventional optimization methodologies is that they are also constrained by the 
computation complexity. To solve a large size GAP or a DP program is extremely 
computationally expensive. Usually, exact solutions are not computationally tractable to 
obtain. In such cases, one has to apply heuristics that sacrifice the accuracy of the 
solution. Finally, the conventional optimization methodologies are all centralized 
programs. In other words, in those models, there is a central planner who comes up with 
the schedule to deploy the team members and the team members do not have any 
decision power but follow the assigned duties. This might not be always true in practice, 
particularly when one deals with people rather than machines, or in domains where 
such a powerful and capable central planner does not exist.  

Linkage to TESTOR  

Optimization methodologies, however, can still be appropriately applied in the Navy 
teamwork if the obstacles can be solved. In the Navy teamwork problem, one can divide 
the factors (or coefficients) that impact the teamwork performance into two groups: 
hard factors and soft factors. The hard factors refer to those that can be directly 
mathematically modeled, such as the number of tasks, the quantity of resources that are 
needed, and the monetary payoff that can be realized from finishing the tasks. The soft 
factors are those that cannot be modeled directly in mathematics. Those factors can 
include the ones discussed above, such as agent personalities, teamwork skills, team 
cohesions, etc. To cope with the soft factors, team simulation and psychological theories 
can be applied. For instance, agent-based team simulation combined with psychological 
theories can be applied to characterize the impacts of agent personalities, teamwork 
skills and team cohesion on task performance. Generally, with the simulation tool, one 
can assign different types of agents (with particular parameters) to some particular tasks 
and then summarize the realized performance. Next, checking with statistical 
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observations (history data), one can find which set of parameters are realistic to model 
the impacts of personalities, teamwork skills and team cohesion. Finally, those 
parameters can approximately represent the impacts of those soft factors in reality.  

With all the key coefficients being characterized, an optimization model on team 
assignment can be developed, as either a static version for closely static problems or as a 
dynamic version for stochastic problems with timing consideration. In particular, to 
deal with the stochastic factors and computational complexity, one can decompose the 
original optimization problem into sub-problems that are tractable, and apply agent-
based simulation to approximate the whole solution for the original problem. Moreover, 
based on multi-agent simulation systems, decentralized factors also can be captured by 
modeling the agents as autonomous decision makers, and one can simulate the 
performance of the team with the solution of the task assignments obtained from the 
optimization model; by such close-loop checking and amendment on the models, one 
can find the final satisfactory solution of the problem. 

Individual Diagnostic Assessment of Teamwork 

Surprisingly, diagnostic assessment of Sailor teamwork where a Sailor interacts with 
a team of agents may be easier to achieve than prediction of team performance. This 
occurs because, as reviewed earlier, there are well-developed criteria for assessing the 
quality of teamwork. Unlike all-agent team simulations which could be run without 
extensive computation in faster than real time, hybrid simulations involving humans 
and agents must provide user interfaces and present events in a compelling and realistic 
way. Such an application would require identifying a range of situations and scenarios 
that could elicit the types of teamwork behaviors to be assessed. Due to motivational 
factors these test scenarios should draw on skills and domain knowledge the Sailor 
already possesses and have sufficient realism to induce stress or other mental states of 
interest. Agents could be programmed to interact adaptively to provide opportunities for 
observing human responses such as monitoring or backing up behaviors. It may be 
advisable to restrict evaluation to the particular types of team organization or tasks that 
are the focus of interest. In addition to assessing teamwork behaviors of the testee 
directly, comparisons could be made between team performance for the testee’s team 
and that of a reference team consisting of all agents or a team with a high scoring 
human. This section presents two approaches to assessing teamwork. The first requires 
understanding the role, context, and actions required of a team member and assessing 
these aspects of performance. The second approach avoids understanding task or 
teamwork demands and instead assesses performance by judging overall similarity to a 
reference.  

Teammate Turing Test 

First, the critical feature of any such system would be the ability of the agents to 
supply realistic enough behavior and interactions to elicit teamwork behaviors for 
measurement. This requires that agents must be able to perform their taskwork in a 
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correct and credible manner, communicate realistically with the Sailor, and comprehend 
both behaviors and communications from the Sailor. Difficulties in maintaining 
common ground so that agents and Sailor hold similar views of the state of the world 
will vary greatly depending on the types of tasks being simulated. Situation displays 
such as interactive maps provide an excellent basis for maintaining common ground 
because the map is available to both human and agents and human actions such as 
selection of objects or locations are unambiguous. Menu selections and toolbars are easy 
to interpret for the same reasons. Textual interfaces such as chat programs, now widely 
used in some military contexts, can also provide a good interaction medium provided a 
communications protocol and restricted vocabulary are used. (Restricted vocabulary 
and adherence to communications protocols, incidentally, were some of the 
characteristics that Prince & Salas [1993] found distinguished effective teams.)  

A second challenge affecting the difficulty of simulating agent teammates involves 
the degree of constraint provided by the task. For highly constrained tasks or 
procedurally driven checklists, both errors of omission and commission are more easily 
identifiable. Because role following dictates where an action or communication should 
occur as well as its general form, a program can check responses against a lattice that 
orders the tasks to enforce necessary orderings and use string matching to assess 
content. Table 2 shows criteria that might easily be assessed automatically from the 
proposed criteria for assessing the quality of group processes presented in Figure 2.  

Table 2 
Teamwork criteria that might be assessed automatically 

Sensing 
Attempts to obtain information are relevant to mission, task, or problem 

Communicating Information 
• Timeliness appropriate to unit requirements 
• Correct choice of recipients; everyone who needs information receives it 
• Whether message should have been communicated 

Decision making 
 Appropriateness: Timing is appropriate in view of the situation, conditions, 

and intended effects. Choice of target of the action is appropriate. 
Communicating implementation 
 Transmission to appropriate recipients 
Coping actions 
 Timeliness of the action in view of both operational circumstances and the 
 decision or order from which the action derives 
Feedback 
 Timeliness of the feedback decision and action 
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As noted, syntactically-based judgments involving timing, choice of recipient, 
accesses to obtain information, or relaying of information might be automated with 
relative ease. Semantic judgments requiring assessment of accuracy, adequacy, or 
appropriateness would be substantially more difficulty. This would be particularly true 
for spoken communication where recipient and time would remain easy to measure but 
semantic judgments would be made more difficult both by errors in speech recognition 
and the tendency for verbal responses to be less restrained. 

To illustrate these distinctions we will compare two team tasks previously used in 
hybrid human-agent team experiments, Tandem (Sycara & Lewis, 2002) and Moksaf 
(Sycara & Lewis, 2004). 

TANDEM is a moderate fidelity simulation of a target identification task, jointly 
developed at the Naval Air Warfare Center-Training Systems Division and the 
University of Central Florida. TANDEM simulates cognitive characteristics of tasks 
performed in the command information center (CIC) of an Aegis missile cruiser. Figure 
10 shows a typical TANDEM display. Information about the hooked target (highlighted 
asterisk) is obtained from the pull-down menus A,B, and C. 

The cognitive aspects of the Aegis command and control tasks which are captured 
include time stress, memory loading, data aggregation for decision making, and the 
need to rely on and cooperate with other team members to successfully perform the 
task. In performing the task subjects must identify and take action on a large number of 
targets (high workload). The simulation consists of three networked personal computers 
each providing access through menus to five parameters relative to a “hooked” target. 
Subjects must communicate among themselves to exchange parameter values in order 
to classify the target.  
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Figure 10. Tandem display. 

MokSAF (Figure 11) is a simplified version of a virtual battlefield simulation called 
ModSAF (modular semi-automated forces). MokSAF allows three commanders to 
interact with one another to plan routes over a particular terrain. Each commander is 
tasked with planning a route from a starting point to a rendezvous point by a certain 
time. The individual commanders must then evaluate their plans from a team 
perspective and iteratively modify their plans until an acceptable team solution that 
brings the proper composition of forces with adequate supplies to the rendezvous point 
is developed.  
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Figure 11. MokSAF display. 

Table 3 contrasts the two tasks. While in TANDEM it is easy to determine what 
information is needed by which player and whether it has been exchanged there is no 
similar template for judging performance in Moksaf. 
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Table 3 
Comparison of highly constrained and loosely constrained simulations 

Tandem—highly constrained with easily 
classifiable behaviors 

Moksaf—loosely constrained with 
natural language communications and 
problem solving 

Tandem radar task with 
communications through chat 

• Constrained 
communications: agent can 
extract or communicate 
parameter name & value with 
little uncertainty. Selection of 
targets on screen is 
unambiguous. 

Common Ground: simulation state 
and knowledge of what testee has 
viewed allow agent to judge human 
state, choose an appropriate response 
and judge the appropriateness of the 
human’s response in turn 

Mission planning task with natural 
language interface 

• Unconstrained 
communications: agent 
cannot easily interpret 
communications because they 
are not tightly restricted by 
context.  

Lack of Common Ground: Because 
there is insufficient context to interpret 
mouse movements, clicks, utterances, 
etc. it is more complex to program 
agent to respond as a teammate  

As with the all-agent team simulation the choice of agent architectures will be 
dependent on the required capabilities. Agents using task networks would again suffice 
for simulating teammates and assessing performance at highly constrained tasks. If 
agents are required to simulate human teammates at less structured tasks requiring 
problem solving, model tracing to infer states of the human testee, and relatively 
unconstrained communications the problem becomes much more difficult and would 
require a large scale development effort. 

Similarity-based Assessment 

Recent work applying latent semantic analysis (LSA) offers some hope that the 
quality of teamwork behavior might be identified from voice communications without 
requiring natural language understanding. Foltz, Martin, Abdelali, Rosenstein, and 
Oberbreckling (2006) report a correlation r = .76 (p < .01) predicting performance 
scores based on similarities in dialog and patterns of communications among teams 
performing a UAV control task. Of more interest for diagnosing teamwork behaviors, 
they report success in tagging communications finding a Kappa equal to .48 for 
agreement with human raters. Analysis of an older data set augmenting the LSA 
measure with additional natural language measures and selecting the best subset led to 
correlations of between .45–.78 with subject matter expert (SME) ratings for 16 
teamwork behaviors. It is too early to predict whether such hand-tuned methods could 
be adapted to automated online analysis or whether they would be able to perform as 
well with data varying by only a single testee. The possibilities, however, are intriguing 
especially for tagging which could provide a basis for both diagnosis and feedback.  
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Simulation Test Environment 

Selection of the simulation test environment(s) should depend on the aspects of 
teamwork and work context to be assessed. Table 4 contrasts the two general classes of 
simulations that might be appropriate. 

Table 4 
Simulation environments 

Discrete Event Real time (continuous) 
• Adaptable to a wide variety of 

tasks 
• Suitable for textual or graphical 

interfaces 
• Easy to log and program 

interactions 
• Not suited for psycho-motor tasks 
• Does not provide immersion or 

presence 
 

• Physical fidelity (e.g. flight simulation, 
assembly & repair, etc.) 

• Appropriate for stressful, reactive 
tasks 

• Requires 3D graphical interface for 
best effect 

• May generate voluminous logs 
• May provide immersion or presence 
• Is scalable to HMD/Cave 

environments 
 

 

 Collocated 

Synchronous 

Within CIC tasks 

F2F meetings/training

Maintenance  

CIC to field 

C2 
SA 

chat

radio 

voice

AA reviews

videoconferencing

 
Ships logs 

 

 reports 
Briefs & 
instructions  

 

 

 email

 
Report database 

 
Executing orders  

 

Figure 12. Time and space distinctions commonly made in CSCW. 
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Figure 12 provides a commonly used computer-supported cooperative work (CSCW) 
categorization of group tasks in terms of participant location and timing of interaction. 
For all of this figure except the upper left quadrant, humans could be replaced by agents 
without change to the appearance of the task. These cases in which participants are 
separated by space or time also generally involve cooperative tasks which are mediated 
electronically obviating the need for model physics, facial expressions, or other 
continuous events. This makes discrete event simulation a logical choice for such tasks. 
Although discrete event simulations are simple enough to develop one specifically for 
this purpose there are many available that could be adapted. Distributed Dynamic 
Decision making (DDD) developed by Aptima shown in Figure 13, for example, is a 
configurable simulation providing a map-based display and suitable for simulating a 
variety of C3I tasks. Discrete event simulations we have developed include MokSAF 
(Sycara & Lewis, 2004) for route planning, Morse (Sycara, Scerri, Giampapa, Srinivas, & 
Lewis, 2005) for NASA range operations, and Sanjaya (Scerri, Owens, Yu, & Sycara, 
2007) for UAV and ground operations. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. AWACS display simulated in DDD. 

If tasks need to involve face-to-face interactions, or require “out the windshield” 
views to induce stress or temporal demands, a continuous simulation would be needed. 
Unlike discrete time simulations which are fairly simple to construct and integrate with 
other applications, continuous simulations require extensive software and are difficult 
to develop and instrument. If a continuous simulation is needed we strongly 
recommend adapting an existing game engine for this purpose. There are a variety of 
available engines ranging from the opensource Delta3D (www.delta3d.org) developed at 
the Naval Postgraduate School to extremely expensive proprietary game engines such as 
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Epic Games Unreal 3 Engine (http://www.unrealtechnology.com/licensing.php). There 
are also so called strategy games such as the open source Global Conflict Blue 
(http://gcblue.com/) that mix aspects of both continuous and discrete event simulation. 

Conclusions and Recommendations 

The scope of agent development effort will primarily depend upon a number of 
choices:  

First, the degree of sophistication in agent reasoning. Some of the choices are: 

• Normative procedural models and performance shaping factors for them  

• Planning, problem solving  

• Team adjustment behaviors 

• Team maintenance (meta control over repeated episodes) 

Second, the intended functionality of the simulation. Some of the choices are: 

• Prediction of team performance 

• Team selection 

• Individual diagnostic assessment of teamwork 

• Assessment of teamwork for human teams 

Third, the type of simulation (discrete event vs continuous) and the human interface 
to the simulation. 

The primary determinant of level of effort will be the choice between a normative 
procedural agent model and one capable of less constrained behavior including problem 
solving and learning. This effort would involve not only construction and programming 
of agents but also calibration and validation of agent behaviors. We anticipate that 
calibration and validation would be substantially more expensive than the initial 
programming particularly for more sophisticated/less constrained agents. The 
difference in effort between procedural models and models that include problem solving 
and learning is because normative procedural models can be calibrated against 
variations in human performance associated with performance shaping factors and their 
interactions. For less constrained behaviors the range of possibilities becomes so great 
that new sampling and estimation methods would need to be developed for calibrating 
and testing agent models. Even then, with so many degrees of freedom these models are 
likely to overfit the data making performance prediction difficult.  

The choice between discrete event and continuous simulation types should have a 
smaller impact on level of effort although discrete event simulations are easier to design, 
program, and interface with agents. Finally, if the simulation is used to assess human 
performance, a human-computer interface and methods for assessing performance will 
be needed. This would add additional costs to the project. 
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Table 5 shows the relative levels of effort projected for the alternatives that arise 
when considering different combinations of the three types of considerations, namely 
agent reasoning, intended functionality of the simulation and simulation environment. 
The grayed out cells indicate alternatives unlikely to contribute to TESTOR’S objectives. 
For example, running agents in an only-agent simulation in a continuous simulation 
environment is not advisable since the requisite technology (e.g., imbuing agents with 
human perceptual capabilities, sophisticated collision avoidance, and path planning, 
etc.) is not routinely available; hence this type of development would be very expensive 
without giving proportional benefit. On the other hand, discrete event simulation is a 
reasonable alternative for agent-only simulations since (a) the development 
methodology is available, and (b) the needed data could be collected efficiently by 
running the agents in faster than real time. Conversely, in time stressed tasks for which 
humans need continuous simulation, tasks are predominately constrained and 
procedural making sophisticated agent teammates unnecessary. 

Table 5 
Projected levels of effort 

Agent 
Sophistication Discrete Event Continuous 
 agent only agent + 

humans 
agent only agent + 

humans 
Normative 
procedural 

Alternative-1 
Low 

Alternative-2 
Moderately 
Low 

 Alternative-3 
Moderate 

Interleaved 
planning & 
execution 

Alternative-4 
Moderately 
High 

Alternative-5 
High 

  

Alternative-1. Agent Only Prediction of Team Performance with DE 
Simulation and Procedural Tasks 

The primary effort involved in this alternative would be collecting data and 
validating models for the effects and interactions of performance shaping factors in 
procedural tasks. While some data (reviewed previously) on the effects of individual 
factors are available, very little is known about their interactions. How, for example, 
would the distribution of mental ability, extraversion, team cohesion, and task skills 
interact to influence team performance? To construct a computational model, these 
contributions would need to be specified precisely. This is not available from the current 
literature and would require estimates from subject matter experts, new survey items, 
focus groups, or other sources. Once constructed the models would require validation. 
This would need to be repeated on a task by task basis until a representative sample 
(~10+) of tasks has been modeled.  
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Alternatively, focusing on a target task or group of tasks of particular interest to the 
Navy might allow more rapid and accurate modeling but only for restricted types of 
teams and tasks.  

Effort estimates for Alternative-1. 
Data collection and generation for modeling 2 man years/task @ 10 tasks: 20 man years 
Model validation 1 man year/task @ 10 tasks:     10 man years 
Model construction 1/10 man year/task @ 10 tasks:      1 man year 
           31 man years 

Alternative-2. Agent Model for Prediction and Human Participation for 
Assessment Using DE Simulation and Procedural Tasks 

Development costs for Alternative-2 include all data collection, modeling and 
validation costs for Alternative-1. In order to interact with humans and assess human 
teamwork there are additional requirements for the development of (a) a human-
computer interface, and (b) methodologies and software for assessing hybrid teamwork 
performance. Unlike an agent-only simulation which only needs to support message 
passing and events, a simulation interacting with humans needs to provide a human-
agent interface. The interface must display graphical and other information to the 
human and interpret human inputs to the system and agent teammates. The effort 
involved will depend on the character of this interaction. If a “shared” graphical 
interface such as a radar or map display is used and communication comes primarily 
through interacting with this display by doing things such as selecting or classifying 
targets, the effort should be moderate. Designing and implementing displays of this sort 
for discrete event simulation is relatively easy. An existing simulation such as DDD 
could be adapted or a new simulation developed in-house for this purpose. The keys to 
limiting development effort are (a) making human inputs intelligible to the agents by 
interacting through a shared display and (b) limiting the richness of human-agent 
interaction by restricting communications to predictable referents on the screen. This 
allows the system to match human behaviors against those expected from a team 
member performing appropriate teamwork. An alternative or parallel assessment of 
teamwork might be provided by automated communication analysis. Although 
automated communications analysis provides a less accurate assessment of teamwork 
than direct measurement of agreement with appropriate actions, it can be used in 
situations where a reference model has not been developed. Using communication 
analysis would add the additional costs of programming agents to generate appropriate 
textual or verbal communications and require validation of the measures for use in 
teams incorporating synthetic teammates. We estimate that incorporating automated 
communications analysis would require 5-10 man years in addition to the effort 
estimates shown below.  

Effort estimates for Alternative-2: 
Alternative-1          31 man years 
Interface and simulation development:       3 man years 
Teamwork scoring & assessment (10 tasks):      2 man years 
Agent interpretation of human input and communication generation:  3 man years 
           39 man years 
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Alternative-3. Agent Model for Prediction and Human Participation for 
Assessment Using Continuous Simulation and Procedural Tasks 

Development costs for Alternative-3 include all data collection, modeling and 
validation costs for Alternative-1. Third party tools such as a game engine or simulation 
environment such as Olive (http://www.Forterrainc.com) would be needed to develop 
effective 3D continuous simulations. Interfacing agents with continuous environments 
requires significantly greater effort than for discrete event simulations as indicated in 
the estimates. Provided that most interaction is via the simulated environment and 
communications are restricted, these costs should remain similar to those of 
Alternative-2. Assessing teamwork using automated communications analysis could be 
appropriate for Alternative-3 and we would again predict 5–10 man years of effort in 
addition to the effort estimates shown below. 

Effort estimates for Alternative-3: 
Alternative-1          31 man years 
Interface and simulation development:      10 man years 
Teamwork scoring & assessment (10 tasks):      2 man years 
Agent interpretation of human input and communication generation:  5 man years 
           48 man years 

Alternative-4. Agent-Only Prediction of Team Performance with DE 
Simulation and Interleaved Planning and Execution 

Procedural tasks are relatively easy to model and validate because they prescribe 
particular actions under particular conditions. Determining the effect of a PSF requires 
only determining the change in an action or its probability under different levels of the 
PSF. Even some forms of archival or retrospective report data might be used although 
dynamic aspects of team performance could be obscured.  

Where behavior is not fixed but may vary widely while remaining appropriate, as in 
Intelligence Preparation of the Battlespace, it becomes much more difficult to model. 
This is not because planning algorithms are so difficult to implement but because it is 
very difficult to verify that a planning program will make the same choices and errors as 
the human(s) being modeled. Unlike a procedural model which could be validated 
against multiple repetitions of the same task by different teams, a planning/problem 
solving model would need to be validated against a sample of problems from the 
population of possible problems. Each problem of this sample would in turn require its 
own repetitions by human teams for validation. Plausible models could be programmed 
and run with moderate effort, however, the validity of their predictions would not be 
known. Whatever the approach to this alternative it would probably be advisable to pick 
a relatively restricted team and problem/task type.  

Effort estimates (validated models) for Alternative-4: 
Data collection and generation:       25 man years 
Model validation:         30 man years 
Model construction:        10 man year 
          65 man years 
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Alternative-5. Agent Model for Prediction and Human Participation for 
Assessment with DE Simulation and Interleaved Planning and Execution 

Development costs for Alternative-5 include all data collection, modeling and 
validation costs for Alternative-4. The data collection and modeling needed to validate 
agent models would provide a ready reference for assessing human trainees. The costs 
of programming agents to generate appropriate textual or verbal communications; 
however, would be substantial and require extensive testing because of the lack of 
constraints on communications. These difficulties would be accentuated if automated 
communications analyses were contemplated.  

Effort estimates (validated models) for Alternative-5: 
Data collection and generation:        25 man years 
Model validation:          30 man years 
Model construction:         10 man year 
Teamwork scoring & assessment (10 tasks):      5 man years 
Agent interpretation of human input and communication generation: 10 man years 
           80 man years 

These estimated levels of effort are very rough approximations and intended to give a 
sense of the relative difficulties. Many of the development activities could be performed 
in parallel.  We advise adopting an incremental approach to development due to the 
innovative nature of the proposed systems. We foresee model validation as the greatest 
challenge and believe that developing a pilot prototype would be advisable. This 
prototype could be used to help determine the forms of data needed and testing required 
to attain the desired levels of prediction from team models.  

We believe that the pilot effort should start by selecting a procedural team task of 
interest to the Navy (from Alternative-1) for which substantial data on process as well as 
outcomes already exist. Although ultimately team models are to be developed and tested 
using forms of data most readily available, we believe that it is crucial to start with a task 
that can be simulated in the laboratory. This would allow developers to test hypotheses 
about mechanisms as well as outcomes in order to develop an accurate model of the task 
and performance shaping factors. This reference model could be used in turn to help 
identify data requirements and expected quality of prediction for models built using 
other types of data. Results from this pilot should provide more accurate assessments of 
the costs and expected ROI for full implementation of one or more of the alternatives.  
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